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ABSTRACT

We develop a kinetic theory for the electron strahl, a beam of energetic electrons
which propagate from the sun along the Parker-spiral-shaped magnetic field lines. By
assuming a Maxwellian electron distribution function in the near-sun region where
the plasma is collisional, we derive the strahl distribution function at larger helio-
spheric distances. We consider the two most important mechanisms that broaden the
strahl: Coulomb collisions and interactions with oblique ambient whistler turbulence
(anomalous diffusion). We propose that the energy regimes where these mechanisms
are important are separated by an approximate threshold, Ec; for the electron kinetic
energies E < Ec the strahl width is mostly governed by Coulomb collisions, while
for E > Ec by interactions with the whistlers. The Coulomb broadening decreases
as the electron energy increases; the whistler-dominated broadening, on the contrary,
increases with energy and it can lead to efficient isotropization of energetic electrons
and to formation of the electron halo. The threshold energy Ec is relatively high in the
regions closer to the sun, and it gradually decreases with the distance, implying that
the anomalous diffusion becomes progressively more important at large heliospheric
distances. At 1 AU, we estimate the energy threshold to be about Ec ∼ 200 eV.

Key words: solar wind – plasmas – Sun: heliosphere

1 INTRODUCTION

The solar wind consists of a magnetized plasma nearly ra-
dially propagating from the sun. Observations show that
the temperature of the expanding plasma declines with
the radial distance r, following an approximate power law
trend T(r) ∝ r−γ, where γ ≈ 0.5 (e.g., Köhnlein 1996;
Cranmer et al. 2009; Štverák et al. 2015; Bale et al. 2016;
Chen 2016; Verscharen et al. 2019). In particular, at the dis-
tance of 1 AU the solar wind cools down to about 10 eV as
compared to the solar corona where the plasma tempera-
ture is on the order of 100 eV. The solar wind plasma is,
however, weakly collisional, so while the temperature of its
Maxwellian core follows the mentioned trend rather well,
the velocity distribution function also has features that de-
viate significantly from the thermal Maxwellian distribu-
tion. In particular, the electron velocity distribution func-
tion (eVDF) can be represented as consisting of three ma-
jor components, the nearly Maxwellian thermal core, the
suprathermal beam aligned with the direction of the mag-
netic field (the so-called strahl), and the nearly isotropic
and broad (non-Maxwellian) halo, which overlaps in energy
with the strahl (e.g., Feldman et al. 1975; Pilipp et al. 1987;
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Pierrard et al. 2016). The strahl and halo are relatively ten-
uous, for instance, at 1 AU they comprise about 5% of
the total electron density. However, since their energies ex-
ceed that of the core by an order of magnitude, the heat
flux associated with the strahl is non-negligible and it can
heat the solar wind at relatively large heliospheric distances
(e.g., Štverák et al. 2009, 2015). Moreover, non-Maxwellian
anisotropic distribution function can be a source of kinetic
instabilities and small-scale turbulence that lead to forma-
tion of structures, particle heating and acceleration (e.g.,
Forslund 1970).

In this work we develop a kinetic theory of the elec-
tron strahl. In order to understand how the strahl is formed
and how it changes with the radial distance, we trace the
evolution of the electron velocity distribution function all
the way from the hot inner region (∼ 5 − 10 R⊙) where
the electrons are assumed to have a given distribution (say,
a Maxwellian) to larger heliospheric distances. We assume
that the magnetic field has a Parker-spiraled structure, and
solve the drift-kinetic equation that describes the evolution
of the electron distribution function along the magnetic field
lines. The energetic, nearly collisionless electrons streaming
along the magnetic-field lines away from the sun, get colli-
mated into a narrow beam (strahl) due to conservation of
their magnetic moment. Weak Coulomb collisions with the
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background plasma, on the other hand, tend to broaden their
collimation angle.

Comparison with some strahl measurements in the fast
solar wind (e.g., Štverák et al. 2009, 2015; Horaites et al.
2018a,b) demonstrates that our Coulomb theory allows one
to describe the physics of strahl formation rather well,
on both qualitative and quantitative levels. In particular,
the theory is able to predict the strahl angular broaden-
ing and the number of particles in the strahl. When the
Coulomb theory provides a good agreement with the obser-
vational data, it means that other possible scattering mech-
anisms, such as interactions of the electrons with plasma
fluctuations, are relatively unimportant (Ogilvie et al. 2000;
Pierrard et al. 2001; Horaites et al. 2015, 2018a,b, 2019).

In some measurements, however, the angular distribu-
tion of the strahl electrons is wider than the distribution
predicted by the Coulomb model (e.g., Anderson et al. 2012;
Graham et al. 2017, 2018). In such cases, it is reasonable to
assume that the enhanced broadening is provided by am-
bient plasma turbulence that scatter the energetic electrons
(anomalous scattering); such scattering should be taken into
account in addition to that provided by Coulomb colli-
sions (classical scattering). One of the natural candidates
for the anomalous scattering is whistler turbulence (e.g.,
Gary et al. 1975, 1994; Vocks & Mann 2003; Vocks et al.
2005; Saito & Gary 2007; Pagel et al. 2007; Pierrard et al.
2011; Wilson et al. 2013; Lacombe et al. 2014; Kajdič et al.
2016; Stansby et al. 2016; Tang et al. 2018). In order to an-
alyze the strahl broadening caused by whistler turbulence,
we assume that the turbulence is oblique with respect to
the background magnetic field, and incorporate the anoma-
lous scattering in the drift kinetic equation. In this re-
spect our consideration is complementary to previous stud-
ies that considered electron-strahl broadening caused by the
whistlers propagating along the background magnetic field
(Pierrard et al. 2011; Tang et al. 2018).

We find that the scattering by the whistlers rapidly in-
creases with the intensity of the turbulence. As a result,
the two scattering mechanisms (that is, Coulomb scattering
and scattering by the oblique whistlers) dominate in dif-
ferent regions of the phase space roughly separated by an
energy threshold, Ec . The strahl electrons with lower en-
ergies, E < Ec , are mostly scattered by classical Coulomb
collisions, while the more energetic electrons, with ener-
gies exceeding Ec , by whistler turbulence. As the anomalous
scattering becomes far more significant than Coulomb col-
lisions at high energies, it may lead to isotropization of the
energetic strahl electrons and to formation of the electron
halo. We estimate that at 1 AU, the threshold energy may
be on order of 200 eV. The dominance of Coulomb colli-
sions at lower energies and the predicted energy-dependent
strahl broadening at higher energies is qualitatively con-
sistent with the recent analytical and observational studies
(e.g., Horaites et al. 2019; Berčič et al. 2019).

2 THE COULOMB THEORY OF THE STRAHL

In this section, we develop a kinetic theory for the strahl
component of the eVDF taking into account classical
Coulomb collisions and neglecting anomalous scattering ef-
fects. The speed of the strahl electrons is significantly larger

than that of the solar wind. The suprathermal electrons not
only experience significantly weaker Coulomb collisions as
compared to the core electrons, but they also stream from
the sun to very large distances (∼ 10 AU) along nearly sta-
tionary magnetic-field lines. Indeed, the magnetic field lines
are advected with the speed of the solar wind, while the
speed of the electrons is much higher.

When the collision frequency is much smaller than the
gyrofrequency of the particles, the electron velocity distribu-
tion function is gyrotropic; it can be averaged over the fast
period or electron gyromotion. It can then be written using
the variables of velocity v, the cosine of the angle between
velocity and the (anti-sunward directed) background mag-
netic field µ ≡ cos θ = v‖/v, and the distance along a mag-
netic field line x. The distribution obeys the following drift-
kinetic equation (e.g., Kulsrud 2005; Horaites et al. 2015):

∂ f

∂t
+ µv

∂ f

∂x
−

1

2

d ln B

dx
v

(

1 − µ2
) ∂ f

∂µ

−
eE‖

me

[

1 − µ2

v

∂ f

∂µ
+ µ
∂ f

∂v

]

= Ĉ( f ). (1)

In this equation, E‖ = −∇φ(x) · x̂ is the electric field along the

magnetic field line, and Ĉ( f ) denotes the collision integral.
Let us first consider a purely collisionless evolution,

Ĉ( f ) = 0, and assume that we are interested in a steady-state
distribution. Equation (1) then takes an especially simple
form if one uses the following variables: the magnetic mo-
ment M = mev

2
⊥/(2B(x)), the total energy E = mev

2/2+eφ(x),
and the distance x. As can be directly verified, the electron
velocity distribution function f (E,M, x) then obeys the equa-
tion

µv ∂ f /∂x = 0, (2)

meaning that the distribution function is independent of the
distance. The magnetic field lines that generally follow the
Parker-spiral configuration, are almost radial close to the
sun. By using the observationally inferred trends for the
temperature and density variations with the heliospheric dis-
tance (e.g., Köhnlein 1996; Štverák et al. 2015), one can ex-
pect that at a distance of approximately x = r0 ∼ 5 − 10 R⊙ ,
the plasma is dense and relatively more collisional than at
larger radial distances, so one may assume that the elec-
tron distribution is Maxwellian with a temperature of about
T0 ∼ 100 eV. (This simplifying assumption, although plau-
sible, is not essential for our kinetic derivation. Our theory
can be generalized for any gyrotropic distribution specified
at distance r0. Our goal is to find the electron distribution
function at larger distances, r > r0, once this inner-region
distribution is known.)

In the new variables, the Maxwellian distribution looks
like

f (r0, E,M) = A0 exp

{

−
E

T0

}

θ (E − MB0) , (3)

where A0 = n0(me/2πT0)
3/2 is the normalization coefficient,

B0 = B(r0), and the theta function reflects the fact that
our variables obey the restriction E ≥ MB0. According to
Eq. (2), the distribution function in these variables is inde-
pendent of the distance, f (r, E,M) = f (r0, E,M); we therefore
obtain from Eq. (3), r > r0:

f (r, E,M) = A0 exp

{

−
mev

2

2T0
−

eφ(r)

T0

}

θ

(

v
2
+

2e

me
φ(r) −

B0

B(r)
v

2
⊥

)

. (4)
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Away from the sun, r > r0, the ambipolar potential energy
eφ(r) fast approaches its maximal value, eφ∞, which is a
few times larger than T0.

1 We can estimate the pitch-angle
breadth (θ) of the beam at such distances, by equating the
argument of the theta-function in Eq. (5) to zero:

sin2 θ =
v

2
⊥

v2
=

B(r)

B0

(

1 +
2eφ∞

mev
2

)

. (5)

For instance, at r = 1 AU, we can estimate by order of mag-
nitude that B(r)/B0 ∼ 10−4, so for the electron kinetic energy
of mev

2/2 ∼ 100 eV, the strahl collimation angle would be
rather narrow, θ ∼ 10−2.

One can show, however, that such a narrow collimation
angle cannot be established, since it will be broadened by
weak Coulomb collisions. In order to describe the Coulomb
collisions, we need to add the collision integral in Eq. (2).
The energetic strahl electrons have relatively weak energy
exchange with the plasma particles forming the Maxwellian
core, however, they experience a significant pitch-angle scat-
tering. In order to describe the strahl broadening, we, there-
fore, retain in the collision integral only the term describing
the pitch-angle scattering (e.g., Helander & Sigmar 2002):

Ĉ( f ) =

(

4πn(x)e4
Λβ

m2
ev

3

)

∂

∂µ

(

1 − µ2
) ∂ f

∂µ
. (6)

This collision integral describes the pitch-angle scattering
of the suprathermal strahl electrons (v2 ≫ v

2
Te

) by the
Maxwellian core electrons and the core ions. In Eq. (6),
β = (1 + Zef f )/2, where Zef f is the effective ion charge. For
the solar wind plasma, β can be estimated as β ≈ 1.05. The
Coulomb logarithm can be estimated at 1 AU as Λ ≈ 30, it
is a slowly varying function of the distance, and n(r) is the
density of the core electrons, which is approximately equal
to the density of the ions, see e.g., Horaites et al. (2019).

The collision integral can be rewritten using the new
variables E, M, and x, which gives for the steady-state drift-
kinetic equation (Horaites et al. 2019):

∂ f (x, E,M)

∂x
=

4πe4
Λβn(x)

E(E, x)B(x)

∂

∂M
M

√

1 −
MB(x)

E(E, x)

∂ f

∂M
, (7)

where we have denoted E(E, x) ≡ E − eφ(x) = mev
2/2. The

expression in the square root in Eq. (7) can be simplified
since, as one can directly verify, MB(x)/E(E, x) = v

2
⊥/v

2
=

sin2 θ ≪ 1, and this term can be neglected. Moreover, as we
are interested in the runaway electrons, the total electron
energy should exceed the ambipolar potential barrier, E >

eφ∞.
An equation similar to Eq. (7) was analyzed in our pre-

vious treatment of the problem (Horaites et al. 2019), where
we were interested in the evolution of the strahl at radial
distances significantly exceeding the coronal region, r ≫ r0.
As a result, we were able to obtain the angular distribu-
tion of the strahl electrons, but could not specify the elec-
tron distribution function uniquely – our solution contained

1 We define the ambipolar potential in such a way that it is zero
at r = r0. Using standard methods, one can demonstrate that it
increases to the values comparable to its asymptotic value φ∞ at
a typical distance of order r & r0(me/mi )

1/4, which for a hydrogen
plasma gives r & 6 r0.

an arbitrary function of the electron kinetic energy. In the
present work, we relate the electron distribution function to
the boundary condition at r ∼ r0, and derive a complete
solution for the suprathermal electron strahl.

It is convenient to represent the kinetic energy in the
form E = ∆E + T (x), where the first term, ∆E = E − eφ∞, is
independent of the distance, and all the radial dependence
is included in the function T (x) = eφ∞ − eφ(x).2 One can
argue that the function T (x) is on the order of the local
electron temperature, T (x) ≈ T(x). Indeed, the local kinetic
energy of an electron, E − eφ(x), cannot exceed eφ∞ − eφ(x),
otherwise, such an electron will run away to infinity. There-
fore, T (x) is on the order of the local kinetic energy of the
background electrons, and, therefore, is proportional to their
temperature. In what follows, we, therefore, will approxi-
mate E ≈ ∆E + T(x).

The form of Equation (7) suggests that we may intro-
duce the following new variable (see also (Horaites et al.
2019)):

dy =

(

4πe4
Λβ

E

) (

n(x)

B(x)

)

dx. (8)

In this equation, dx is the length element along a magnetic
field line. Since the magnetic field is frozen into the solar-
wind flow, the combination dxn(x)/B(x) is an invariant of
the motion. We can, therefore, evaluate it at the distance r0

close to the sun, where the magnetic field lines are nearly
radial, dxn(x)/B(x) = dr0n(r0)/B(r0). Next, we notice that the
solar wind speed is nearly constant as a function of the radial
distance at r > r0. Therefore, any two points separated by
the radial distance dr that corresponds to the separation
dx along a field line, do not change their radial separation
during the motion, thus dr = dr0. We can, therefore, write

dy =

(

4πe4
Λβ

E

) (

n0

B0

)

dr =

(

4πe4
Λβ

∆E + T (r)

) (

n0

B0

)

dr . (9)

This equation can, in principle, be integrated once the
temperature profile is specified. For instance, if we assume
the model power-law behavior for the electron temperature
T (r) ∝ r−0.5, a straightforward calculation will give

y =
4πe4

Λβn0

B0∆E
R(r), (10)

where we have denoted

R(r) = r

[

1 − 2

(

T (r)

∆E

)

+ 2

(

T (r)

∆E

)2

log

(

∆E

T (r)
+ 1

)

]

. (11)

For a given energy, R(r) is a function of the heliospheric
distance only. Since we are interested in suprathermal elec-
trons, we can often approximate E ≈ ∆E ≫ T(r), and, there-
fore, in this limit the function R(r) can be replaced by r in
Eq. (10). We, however, note that in cases when we need
to evaluate exponential functions, we may need to keep the
small T (r) term in the general expression for the energy
E = eφ∞ + ∆E = eφ∞ + E − T (r).

2 We remind the reader that we denote by x the distance along
a magnetic field line, while keep the variable r for the radial dis-
tance. One variable can be expressed through the other by using
the Parker-spiral shape of the magnetic field.
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Equation (7) now turns into a two-dimensional diffusion
equation in M-space:

∂

∂y
f (y, E,M) =

∂

∂M
M
∂

∂M
f . (12)

The standard solution of Eq. (7) takes the form (Eqs. 5-6,
Horaites et al. 2019):

f (y, E,M) =
C(E)

y
exp

(

−
M

y

)

, (13)

where C(E) is an arbitrary function. We would now like
to match the solution (13) with our formula for the colli-
sionless case (4). We will accomplish this by imposing that
the two solutions have the same width (∆M) and amplitude
at some distance ym. First let us consider that the width
of the strahl (in terms of M) inferred from Eq. (13), ∆M,
is on the order ∆M ∼ y. By comparison, the width of the
strahl described by Eq. (4) is estimated as ∆M ∼ E/B0. So
we find that the solutions will have the same width, and can
be approximately matched, at the (energy-dependent) dis-
tance ym ∼ E/B0. Additionally equating the amplitudes of
solutions (13), (4) leads to the expression, which we use to
model the strahl3 at distances y & ym:

f = A0 exp

(

−
E

T0

)

E

B0

1

y
exp

(

−
M

y

)

. (14)

The obtained solution can be re-written in a more compact
form if we introduce the electron mean free path at r = r0,
defined as

λ0 =
T2

0

4πn0e4Λβ
. (15)

We then get for the suprathermal part of the distribution
function

f ≈ A0F0
λ0

R(r)

[

∆E + eφ∞

eφ∞

]

∆E

T0
exp

(

−
∆E

T0

)

×

× exp

(

−
E∆E sin2 θ

T2
0

λ0

R(r)

B0

B(r)

)

, (16)

where

F0 =
eφ∞

T0
exp

(

−
eφ∞

T0

)

≈

(

Ti,0

T0

)1/2 (

me

mi

)1/2

. (17)

We remind the reader that E = mev
2/2 is the electron kinetic

energy, ∆E ≈ E − T(r) is the excess of the kinetic energy of
the strahl electrons over the thermal energy of the back-
ground plasma, and the distance parameter R(r) is given by
formula (11). In formula (17), Ti,0 is the temperature of the
ions at the source location r0. The estimate for F0 comes
from the fact that the ambipolar potential barrier φ∞ is es-
tablished as to ensure that the proton and electron fluxes
from the sun balance each other. The electrons, as lighter
particles, escape with higher velocities, therefore, φ∞ is neg-
ative and eφ∞ is positive. Observations and analytical mod-
eling suggests that the ions are heated more efficiently in the

3 From Eq. (10), one can estimate that the distance at which the
two solutions match is several times larger than r0, so that the
collimation angle of the suprathermal electrons is smaller than
one, and the diffusion equation (12) derived in the limit of small
collimation angles, is applicable.

corona, so that Ti,0/T0 ≈ 10 (e.g., Chandran et al. 2011). A
kinetic calculation, assuming that at r0 the distributions of
both the ions and the electrons are Maxwellian and the out-
flows are radially symmetric, then leads to the estimate (17)
and to eφ∞/T0 ≈ 4.4 Formula (16) is the main result of our
Coulomb theory of the electron strahl.

3 ANALYSIS OF THE COULOMB STRAHL

SOLUTION

In this section we discuss what predictions follow from the
strahl solution mediated by Coulomb collisions (Eq. 16) and
to what extend they agree with the available observations.

First result is the width of the strahl, which can be
found from the exponential factor in Eq. (16):

sin2 θ ≈
T2

0

E∆E

R(r)

λ0

B(r)

B0
. (18)

The formula is valid as long as our main assumption
sin2 θ ≪ 1 is satisfied. In the limit E ≫ T(r), this for-
mula is consistent with the result derived previously in
Horaites et al. (2019), where it was found to be in good
agreement with the Wind measurements using the SWE in-
strument (Ogilvie et al. 2000). We remind that the Parker-
spiral magnetic-field strength has the form

B(r) = B0

r2
0

r2

√

√

1 +
r2

r2
45

, (19)

where r45 is the heliospheric distance where the magnetic
field line makes an angle of 45◦ with the radial direction.
From observations, one can estimate that r45 ≈ 1 AU. From
Eqs. (18) and (19) one can see that the strahl becomes pro-
gressively stronger collimated with the distance in the inner
heliosphere, r < r45. However, at r ≫ r45 the width of the
strahl saturates, that is, it becomes independent of the dis-
tance. This effect was discovered in (Horaites et al. 2019).
It can be explained in the following way. At large helio-
spheric distances, the Parker spiral becomes progressively
better aligned with the azimuthal heliospheric direction, so
that the travel distance of the electrons increases as they
propagate away from the sun, which enhances the efficiency
of the Coulomb collisions. Simultaneously, the strength of
the magnetic field (19) declines with the distance slower in
the outer heliosphere, which reduces the magnetic focusing
effect. The solution presented above demonstrates that in
this case the magnetic focusing and Coulomb pitch-angle
broadening balance each other at r ≫ r45, which leads to a
universal saturated width of the strahl.

Second, formula (16) also allows us to estimate the num-
ber of particles in the strahl. First, we note that due to the
exponential cutoff, only the energies ∆E ≈ E . T0 will con-
tribute significantly to the integral of the distribution func-
tion (16). Therefore, the expression in the square brackets in
Eq. (16) is of order unity. Next, we assume that the strahl is

4 Strictly speaking, the kinetic calculation gives the follow-

ing condition for the potential barrier
[

1 +
eφ∞
T0

]

exp
(

−
eφ∞
T0

)

=

(

Ti,0

T0

)1/2 (

me

mi

)1/2
. However, as eφ∞/T0 ≈ 4, we may neglect unity

in the square brackets and use Eq. (17) as an estimate.

MNRAS 000, 1–8 (2015)



Kinetic theory of the strahl 5

narrow, so we can approximate sin θ ∼ θ. The strahl distri-
bution function (16) can then be easily integrated over the
velocity space, and we obtain

nst (r)

n(r)
≈

F0

2

B(r)

B0

n0

n(r)
exp

(

T (r)

T0

)

. (20)

We remind that T (r) is on the order of the local electron
temperature, and T (r) is smaller than T0. At 1 AU, we es-
timate from this formula that nst (r)/n(r) ≈ 0.05. This sim-
ple derivation provides a rather good agreement with the
values inferred from observations (e.g., Štverák et al. 2009).
Due to the slowly changing function exp (T (r)/T0), our for-
mula (20) also predicts that in the inner heliosphere, the
fraction of particles in the strahl slowly declines with the
distance, which is in a agreement with the observations
by Štverák et al. (2009).

In the outer heliosphere r ≫ r45, however, our Coulomb
formula predicts a relative increase of the strahl fraction,
while the observations demonstrate the opposite trend. This
may be not surprising, however, since our Coulomb model
does not include possible strong angular scattering and
isotropization of the strahl electrons due to non-Coulomb
effects, and, therefore, it overestimates the strahl popula-
tion. Non-Coulomb (anomalous) broadening may also ex-
plain the instances where the strahl width was observed
to be broader than that predicted by the Coulomb model
or where the width of the strahl was found to increase
with the heliospheric distance rather than decrease or sat-
urate (e.g., Anderson et al. 2012; Graham et al. 2017, 2018;
Horaites et al. 2019). The non-Coulomb scattering effects
are discussed in section 4.

Third, as follows from Eq. (18), the strahl width is
independent of the parameters of the source – the elec-
tron temperature T0 and the magnetic field B0. The in-
formation about the electron distribution function of the
source is, however, imprinted in the strahl amplitude. Our
formula (16) demonstrates that for the Maxwellian veloc-
ity distribution of the source electrons, the strahl ampli-
tude is proportional to (E/T0) exp(−E/T0). This result agrees
with the exponential fall-off of the strahl amplitude previ-
ously reported in the SWE measurements by Ogilvie et al.
(2000), where the characteristic temperature scales of about
T0 ∼ 100 eV were detected. We also note that the strahl
amplitude, as given by our formula (16), is rather low. An
estimate shows that at 1 AU , the strahl component of the
distribution function starts to exceed the Maxwellian core
component at about E & 4T(r), which also agrees with avail-
able observations (e.g., Štverák et al. 2009).

Finally, it is interesting to point out that a non-
monotone velocity profile of the strahl, as given by the
Coulomb theory (16), may, in principle, lead to an insta-
bility, and if so, it would hardly persist at large heliospheric
distances. If the core+strahl distribution function becomes
unstable, it will quickly relax to a stable monotone profile.
The relaxation process will smooth out the velocity profile
at energies ∆E . T0, but will not change the number of
particles in the strahl as estimated in Eq. (20), and the ex-
ponential decline of the strahl amplitude at higher energies,
∆E & T0.

4 ANOMALOUS BROADENING OF THE

STRAHL

Observations demonstrate that the electron strahl overlaps
in energies with another suprathermal component of the
electron distribution function, the so-called halo. The halo
population is nearly isotropic in the velocity space, and its
distribution is well approximated by a power-law function
at large energies (e.g., Pierrard et al. 2016). The origin of
the halo is currently not well understood. It is possible that
several distinct mechanisms are at play in the halo forma-
tion. One mechanism is related to the possibility that the
fast electrons can be trapped by the magnetic field lines at
large heliospheric distances and directed back toward the
sun by reflection by plasma inhomogeneities or by follow-
ing looped magnetic field lines (e.g., Scudder & Olbert 1979;
Gosling et al. 1993, 2001; Horaites et al. 2019). Indeed, the
observed isotropy of the halo demonstrates the presence
of sun-ward moving energetic electrons. Since these elec-
tron are rather energetic, they are virtually unaffected by
Coulomb collisions and, therefore, they can come from very
large radial distances (∼ 10 AU). As these electrons propa-
gate closer to the sun in the regions of increasing magnetic-
field strength, magnetic de-focusing can efficiently isotropize
their velocity distribution function. The halo electrons can
thus be the population of suprathermal electrons escaped
the sun as a strahl but later trapped by magnetic field lines
at global heliospheric scales, and isotropized by the combina-
tion of Coulomb collisions and magnetic de-focusing. This is
consistent with the fact that the halo is nearly isotropic but
the strahls are predominantly observed in the anti-sunward
directions.

An alternative possibility, which will be discussed in
more detail below, is that the halo is generated locally from
the strahl electrons that experience very strong angular scat-
tering by some mechanism (e.g., Štverák et al. 2009, 2015).
The nature of such a mechanism can be debated, but a
possible candidate for scattering is interaction with ambi-
ent plasma turbulence, in particular, the whistler modes.
The wave-particle resonance condition, ω − k ‖v − nΩe = 0,
can be easily satisfied for n = ±1. The quantitative descrip-
tion of this process depends on the model assumed for the
whistler turbulence. For instance, one can assume that tur-
bulence consists mostly of the whistlers propagating along
the direction of the magnetic field lines, k ‖ ≫ k⊥. Such mod-
els were developed in (e.g., Pierrard et al. 2011; Tang et al.
2018), as possible candidates for explaining the evolution
of suprathermal electrons. The advection-diffusion kinetic
equations describing the electron strahl were derived that
could be analyzed analytically and numerically.

In our consideration, we concentrate on the complemen-
tary case, when the whistler turbulence is oblique, that is,
k⊥ > k ‖ . This assumption may be consistent with some phe-
nomenological and numerical models (e.g., Cho & Lazarian
2009; Boldyrev & Perez 2012; Meyrand & Galtier 2013) and
observations (Alexandrova et al. 2009; Kiyani et al. 2009;
Chen et al. 2010, 2012; Sahraoui et al. 2013; Narita et al.
2016), and similarly to the case of quasi-parallel turbulence,
it also allows for analytical treatment. In the case of oblique
propagation, the whistler-mode frequency has the form

ω = k ‖ k⊥vAdi, (21)

MNRAS 000, 1–8 (2015)
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where vA is the Alfvén speed and di is the ion inertial scale.
Whistlers exist in the region of the phase space ω ≫ kvTi ,
where vTi is the thermal velocity of the ions. In the case
when the ion plasma beta is of order one, βi = v

2
Ti
/v2

A
≈ 1,

this condition implies that k ‖di ≫ 1. For electron velocities
v ≫ vTe, we see from Eq. (21) that ω ≪ k ‖v, therefore, the
resonance condition reads k ‖v = ±Ωe.

The simplest analytical description of the wave-particle
interaction is in the form of quasilinear diffusion, which
demonstrates how the distribution function evolves un-
der the action of a large number of particle interactions
with an ensemble of linear waves (e.g., Stix 1992, Chap-
ter 17). This is certainly an approximation as the whistler
modes are not necessarily linear waves. However, it is
known from analytic modeling and observation, that even
in the case of strongly nonlinear turbulence, the linear
and nonlinear terms in the governing plasma equations
are on the same order (the so-called critical balance con-
dition) (Goldreich & Sridhar 1995; Cho & Lazarian 2009;
TenBarge & Howes 2012; Boldyrev & Perez 2012). There-
fore, a consideration based on a linear dispersion relation,
in addition to being analytically tractable, provides a good
order-of-magnitude estimate. One can ask what contribu-
tion the quasilinear interaction provides to the pitch-angle
scattering. For that we write the collision operator as

Ĉ = S
∂

∂µ

(

1 − µ2
) ∂ f

∂µ
, (22)

where S = SC +SQL is the sum of the Coulomb collision term
and the quasilinear diffusion term. The Coulomb collision
part is given by Eq. (6). The quasilinear diffusion coefficient
SQL is proportional to the integral of the intensity of the
electric-field fluctuations associated with the whistler waves
(Stix 1992, page 498). In our case of ω ≪ k ‖v = Ωe, this
coefficient takes the form

SQL =
πe2
Ω

2
e

m2
ev

3

∫

d2k⊥
1

ω2

�

�E(k ‖, k⊥)
�

�

2

k‖=Ωe/v
. (23)

The electric field of oblique whistler modes has a strong po-
tential component, which is related to their magnetic compo-
nent as (βe/2)eφk/Te ∼ δBk/B, where B is a constant back-
ground magnetic field (e.g., Chen & Boldyrev 2017). This
allows us to express the electric spectrum through the mag-
netic spectrum,

�

�E(k ‖, k⊥)
�

�

2
= k2

⊥

4T2
e

e2β2e

�

�

�

�

δBk

B

�

�

�

�

2

. (24)

Substituting this result and expression (21) for the whistler
frequency, in the integral (23), we obtain

SQL =
4πΩ2

eT2
e

m2
ev

3β2ev
2
A

d2
i

k2
‖

∫

d2k⊥

�

�

�

�

δBk

B

�

�

�

�

2

k‖=Ωe/v

. (25)

Conveniently, the scattering coefficient provided by oblique
whistler modes depends only on the field-parallel spectrum
of the magnetic fluctuations, for which we will assume a
power-law behavior

∫

d2k⊥

�

�

�

�

δBk

B

�

�

�

�

2

=

�

�

�

�

�

δBk‖

B

�

�

�

�

�

2

= Dk−α
‖
. (26)

Here D is the normalization coefficient. It is convenient to ex-
press this coefficient through the intensity of magnetic fluc-
tuations in whistler turbulence. Since whistlers exist only

at scales k ‖di ≫ 1 (and they are strongly Landau damped
at k ‖di ≈ 1 (e.g., Chen et al. 2013)), we estimate the total
magnetic energy in the whistler fluctuations as

(

δB

B

)2

=

∫

1/di

dk ‖

�

�

�

�

�

δBk‖

B

�

�

�

�

�

2

=

dα−1
i

α − 1
D, (27)

which gives

D =
α − 1

dα−1
i

(

δB

B

)2

. (28)

The intensity of the whistler magnetic fluctuations is a pa-
rameter of the theory; it can be inferred, for example, from
observations, or obtained from numerical simulations or an-
alytical modeling. Substituting expression (28) into Eq. (26)
and into the quasilinear diffusion integral (25) we finally ar-
rive at the expression for the scattering coefficient

S =
4πn(r)e4

Λ

m2
ev

3

[

1 +
4π(α − 1)

β2e

(

λe

di

) (

me

mi

)α (

δB

B

)2 (

v

vA

)α+2
]

. (29)

The first term in the brackets corresponds to the classical
Coulomb scattering, while the second term described the
anomalous scattering by the whistlers.

For further consideration, one needs to specify the
parameters of the whistler turbulence: its spectral scal-
ing α, and the intensity of the turbulent fluctuations.
As an example, we may perform a simple estimate by
assuming that the field-perpendicular spectrum of the

turbulence scales as k
−8/3
⊥ and its anisotropy is k ‖ ∝

(k⊥)
1/3. This is consistent with observations and numeri-

cal simulations (Howes et al. 2006; Cho & Lazarian 2009;
Alexandrova et al. 2009; Kiyani et al. 2009; Chen et al.
2010, 2012; Sahraoui et al. 2013; Meyrand & Galtier 2013;
Grošelj et al. 2018; Roytershteyn et al. 2019). We then de-
rive that the field-parallel spectrum scales as ∼ k−6

‖
, and,

therefore, α = 6. In addition, at the distance of 1 AU, we
may estimate di = 107 cm, λe = 1013 cm, vA = 7 × 106 cm/s,
vTe = 2 × 108 cm/s ≈ 10 eV, and βe = 1. For the intensity
of the whistler fluctuations, we may follow observational re-
sults (e.g., Chen et al. 2013) and assume that the intensity
of magnetic fluctuations is on order of (δB/B0)

2 ∼ 10−2. In
fact, it is believed that the magnetic fluctuations in the ob-
servations are dominated by the kinetic-Alfvén modes, with
the whistlers contributing only a fraction of the fluctuation
energy (e.g., Chen et al. 2013), so this expression can serve
as a rather conservative upper boundary. We then obtain

S =
4πn(r)e4

Λ

m2
ev

3

[

1 +

(

E

Ec

)4
]

, (30)

where Ec ≈ 200 eV.5

We see that the anomalous diffusion strongly depends
on the energy. For energies below the characteristic energy
Ec , the electron scattering is provided mostly by Coulomb
collisions. As the energy increases above Ec , scattering by

5 This value, based of somewhat overestimated magnitude of the
magnetic fluctuations δB/B0, provides a lower boundary for the
characteristic energy Ec . As follows from formula (31) given be-
low, weaker magnetic fluctuations would lead to a larger charac-
teristic energy.
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whistlers rapidly becomes dominant. This result is consis-
tent, for instance, with the fast solar wind observations
in (e.g., Horaites et al. 2019) that found that the electron
strahl is rather well described by the Coulomb theory, that
is, it is not affected by anomalously strong scattering at rel-
atively low energies, below 100−200 eV. Our results are also
broadly consistent with the recent studies by (Berčič et al.
2019) who noticed that the strahl angular broadening is a
function of the electron energy and it starts to increase at
energies exceeding several hundred eV.

From Eq. (6) one can see that the threshold energy
scales as

Ec ∝
[

(δB)−2 B(r)6n(r)−3/2
]1/4
. (31)

According to observational estimates (e.g., Horbury et al.
1996; Horbury & Balogh 2001; Bruno & Carbone 2013), the
intensity of magnetic fluctuations measured at a given fre-
quency in the Alfvénic inertial interval in a spacecraft frame
(that, according to the Taylor hypothesis, corresponds to a
given field-perpendicular scale), declines as 1/r4 with the he-
liospheric distance. Simultaneously, since the plasma density
declines as n(r) ∝ 1/r2, the ion inertial scale increases with
the distance as di ∝ r. In order to estimate how the whistler
component of the turbulence evolves with the distance, one
needs to know the mechanism of turbulence generation,
which is currently not well understood. One may, however,
assume that the intensity of the whistler turbulence is pro-
portional to the intensity of kinetic plasma turbulence at the
scale di (in fact, whistler turbulence may be generated at this
scale (e.g., Horaites et al. 2018b)). Since at scales smaller
that di , the spectrum of observed magnetic fluctuation is

∼ k
−8/3
⊥ , their intensity at di is

∫

1/di
k
−8/3
⊥ dk⊥ ∼ d

5/3
i

. When

the intensity of the Alfvenic fluctuations at a given scale
decreases as 1/r4 while the transition scale to the kinetic
regime increases as di ∼ r, the intensity of magnetic fluctua-
tions at the di scale varies as (δB/B)2 ∝ r−4+5/3

= r−7/3. We
therefore assume this behavior as the upper boundary for
the whistler fluctuations.

In the inner heliosphere (r ≪ 1 AU) the magnetic field
strength scales approximately as B(r) ∝ 1/r2, therefore, the
threshold Ec should vary approximately as Ec ∝ r−5/3. In the
outer heliosphere (r ≫ 1 AU), the magnetic strength varies
approximately as B(r) ∝ 1/r, therefore, the energy threshold
scales as Ec ∝ r−1/6. The threshold is quite high in the inner
heliosphere so it does not significantly affect the number
of particles in the strahl. In the outer heliosphere, however,
the threshold may be comparable to T0, so its variations may
significantly affect the number of strahl particles. This may
be broadly consistent with the observational results that the
fraction of the electrons forming the strahl decreases in the
outer heliosphere.

5 CONCLUSIONS

In this work, we have developed a kinetic theory of the elec-
tron strahl, which describes the global evolution of the strahl
electrons and relates their velocity distribution function at
the hot coronal region to that at larger heliospheric dis-
tances. We have solved the drift-kinetic equation that traces
the distribution function along the Parker-spiraled magnetic

field lines. We have considered two pitch-angle scattering
mechanisms that are believed to be relevant for the strahl
broadening - Coulomb collisions (classical scattering) and
scattering by plasma turbulence (anomalous scattering).

The main prediction of our Coulomb theory is the strahl
distribution function given by Eq. (16). We have found that
this theory captures some essential physics of the strahl
formation. In particular, the number of electrons forming
the strahl, given by Eq. (20), and the angular width of the
strahl, given by Eq. (18), are in good qualitative and some-
times quantitative agreement with the available observations
where there are reason to believe that anomalous scattering
is not significant (e.g., Horaites et al. 2018a,b, 2019).

When anomalous scattering mechanisms, e.g., pitch-
angle diffusion caused by plasma turbulence, become impor-
tant, the Coulomb theory is not applicable. To address such
a situation, in addition to Coulomb collisions we have con-
sidered a quasi-linear diffusion provided by oblique whistler
turbulence, as described by Eqs. (22, 29). We have found
that in this case, the angular broadening of the strahl be-
comes energy dependent. In particular, it alters the Coulomb
theory at high energies. Whistler turbulence may, therefore,
efficiently scatter and isotropize very energetic electrons pos-
sibly leading to formation of the electron halo.

According to our results, the anomalous scattering be-
comes significant when the electron kinetic energy exceeds
certain characteristic energy Ec . This energy threshold be-
comes lower at larger heliospheric distances, implying that
the anomalous scattering mechanism becomes progressively
more important with the distance. For a model spectral dis-
tribution of whistler turbulence we estimate that at 1AU,
the anomalous scattering is not expected to be signifi-
cant as compared to Coulomb collisions at the energies
below 200 eV, but it becomes progressively more impor-
tant at higher energies. These results are broadly consis-
tent with the recent analytical and observational findings
by Horaites et al. (2019); Berčič et al. (2019).
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Grošelj D., Loureiro N. F., 2019, The Astrophysical Journal,
870, 103

Sahraoui F., Huang S. Y., Belmont G., Goldstein M. L., Rétino
A., Robert P., De Patoul J., 2013, The Astrophysical Journal,
777, 15

Saito S., Gary S. P., 2007, Geophys. Res. Lett., 34, L01102
Scudder J. D., Olbert S., 1979, J. Geophys. Res., 84, 6603
Stansby D., Horbury T. S., Chen C. H. K., Matteini L., 2016,

ApJ, 829, L16
Stix T. H., 1992, Waves in plasmas. New York : American Insti-

tute of Physics
Tang B., Zank G. P., Kolobov V., 2018, in Jour-

nal of Physics Conference Series. p. 012025,
doi:10.1088/1742-6596/1100/1/012025

TenBarge J. M., Howes G. G., 2012, Physics of Plasmas,
19, 055901

Verscharen D., Klein K. G., Maruca B. A., 2019, arXiv e-prints,
Vocks C., Mann G., 2003, ApJ, 593, 1134
Vocks C., Salem C., Lin R. P., Mann G., 2005, ApJ, 627, 540
Wilson L. B., et al., 2013, Journal of Geophysical Research (Space Physics),

118, 5
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